
Debugging race condition
problems in GStreamer

10-11 October 2016
Berlin, Germany

Conference 2016

Miguel París
mparisdiaz@gmail.com

2

Who I am

Miguel París

● Software Engineer

● Telematic Systems Master's

● Kurento real-time responsible

● mparisdiaz@gmail.com

● Twitter: @mparisdiaz

mailto:mparisdiaz@gmail.com

Overview

3

 Dealing with multi-threaded systems is not easy in general

 Systems related to media with real-time restrictions are even
much more complicated

– Critical bugs are only seen under specific race conditions
that only take place time to time

– Debugging is a hard work that can consume a lot of time

 Some bugs found in the “Kurento context” due to we work with
dynamic pipelines (performing changes while pipeline is
running)

 Link

 Unlink

 Renegotiate

Process

4

1) Find

● Production
● Tests

2) Reproduce

● Can we create a simple test/program to reproduce the problem?
● It is not needed that it always fails

3) Understand

● Can we gather enough info to understand the problem?
● Use the info to develop a better test/program applying hacks to force

race conditions

4) Fix

● Check that the problem does not take place
● Deeply think about possible drawbacks of the fix

Time consumption

5

Find Reproduce Understand Fix
0

2

4

6

8

10

12

Time

Tool set

6

 Bug finders

 forever.sh (run until failure)

 Bug hunters

 GDB

 valgrind

 G_DEBUG=fatal_warnings

 Specific logs

 Race condition provokers

 sleep

 cond_wait/cond_signal

Using tools

7

 How can we find bugs if the race conditions only happen time to
time (e.g.: 1/1000)?

 Use “bug finders”

● No problem, run as many times you need (e.g.:1000 times)
 Automatic and background way: do not spend developer

time
 Much better if it can be reproduced by an automatic test

 How can we gather the info when the bug happens?

 Use “bug hunters”

 Then analyze outputs and reports
 How can we make a test/program that fails almost always?

 Use “race condition provoker”

 This will help you to understand the problem

Detected Race Condition Bugs

8

● tee: Avoid race condition while forwarding sticky events

– https://bugzilla.gnome.org/show_bug.cgi?id=752213

● tee: adding inactive pad to running element

– https://bugzilla.gnome.org/show_bug.cgi?id=772115

● pad: check caps not NULL before referring

– https://bugzilla.gnome.org/show_bug.cgi?id=768450
● ghostpad: invalid ref getting internal pad

– https://bugzilla.gnome.org/show_bug.cgi?id=768100

● gstclock: segmentation fault when unschedule

– https://bugzilla.gnome.org/show_bug.cgi?id=770953

Analyzing a real case (I)

9

● The goal is not that the audience deeply understand the case, but
see how much complicated this kind of bugs can be and how to apply
the process.

● tee: Avoid race condition while forwarding sticky events

– https://bugzilla.gnome.org/show_bug.cgi?id=752213

– Critical warnings related to tee and pad found in some Kurento tests:

Unexpected critical/warning:
gstpad.c:4258:gst_pad_push_data:<tee0:src_1> Got data flow
before segment event

GStreamer­WARNING **:
gstpad.c:5031:store_sticky_event:<tee0:src_1> Sticky event
misordering, got 'caps' before 'stream­start

GStreamer­WARNING **:
gstpad.c:5059:store_sticky_event:<fakesink1:sink> Sticky
event misordering, got 'caps' before 'stream­start'

https://bugzilla.gnome.org/show_bug.cgi?id=752213

Analyzing a real case (I)

10

● tee: Avoid race condition while forwarding sticky
events

– https://bugzilla.gnome.org/show_bug.cgi?id=752213

– Critical warnings related to tee and pad found in some
Kurento tests:

Unexpected critical/warning:
gstpad.c:4258:gst_pad_push_data:<tee0:src_1> Got data flow
before segment event

GStreamer­WARNING **:
gstpad.c:5031:store_sticky_event:<tee0:src_1> Sticky event
misordering, got 'caps' before 'stream­start

GStreamer­WARNING **:
gstpad.c:5059:store_sticky_event:<fakesink1:sink> Sticky
event misordering, got 'caps' before 'stream­start'

https://bugzilla.gnome.org/show_bug.cgi?id=752213

Analyzing real case (II)

11

● Set environment to “hunt” the error

$> echo "core" |sudo tee
/proc/sys/kernel/core_pattern

$> ulimit ­c unlimited

$> G_DEBUG=fatal_warnings ./forever.sh run.sh

● Ref: man core

– http://man7.org/linux/man-pages/man5/core.5.html

Analyzing a real case (III)

12

[app_thread] [streaming_thread]

 1 - tee0 and fakesink0 are linked

 2 - stream-start event arrives to the tee0:sink pad

 2.1 - it is forwarded to tee0:src_0 and fakesink0:sink

 3 - Just:

 - after forwarding the event to all tee src pads

 - and before storing the sticky event in tee0:sink pad

 a new tee src pad is added (tee:src_1) and linked to fakesink1:sink

 - The stream-start is NOT forwarded to tee:src_1 because the forwarding iteration has already finished

 - the stream start is NOT stored in tee:src_1 because tee0:sink has not stored the event yet

 4 - caps event arrives to the tee0:sink pad

 4.1 - it is forwarded to all tee src pads and to

fakesink0:sink and fakesink:1:sink pads

 So, fakesink1:sink receives the caps event

 without having the stream-start event

 5 - Performs

 5.1 - fakesink1:sink is unlinked from tee:src_1

 5.2 - tee:src_1 is released

 5.3 - fakesink1:sink is linked to a new tee src pad (tee:src_2)

 5.3.1 - stream-start event is stored in tee:src_2

 5.3.2 - stream-start event is tried to be stored into fakesik1:sink

 Here we have the misordering error

Analyzing real case (IV)

13

<GstPipeline>
pipeline0
[-] -> [>]

GstFakeSink
fakesink1

[=]
parent=(GstPipeline) pipeline0

sync=FALSE
async=FALSE

GstFakeSink
fakesink0
[-] -> [=]

parent=(GstPipeline) pipeline0
sync=FALSE

GstTee
tee0
[=]

parent=(GstPipeline) pipeline0
num-src-pads=1

GstCapsFilter
capsfilter0

[=]
parent=(GstPipeline) pipeline0

caps=audio/x-raw, rate=(int)44100

GstFakeSrc
fakesrc0

[=]
parent=(GstPipeline) pipeline0

filltype=((GstFakeSrcFillType) Leave data as malloced)

Legend
Element-States: [~] void-pending, [0] null, [-] ready, [=] paused, [>] playing
Pad-Activation: [-] none, [>] push, [<] pull
Pad-Flags: [b]locked, [f]lushing, [b]locking; upper-case is set
Pad-Task: [T] has started task, [t] has paused task

sink
[>][bfb]

sink
[>][Bfb]

sink
[>][bfb]

src_0
[>][bfb]

ANYsink
[>][bfb]

src
[>][bfb]

ANYsrc
[>][bfb][T]

ANY

[app_thread]
[streaming_thread]

 1 - tee0 and fakesink0 are linked

 2 - stream-start event arrives to the tee0:sink pad

 2.1 - it is forwarded to tee0:src_0 and fakesink0:sink

Analyzing real case (V)

14

<GstPipeline>
pipeline0
[-] -> [>]

GstFakeSink
fakesink1

[=]
parent=(GstPipeline) pipeline0

sync=FALSE
async=FALSE

GstFakeSink
fakesink0
[-] -> [=]

parent=(GstPipeline) pipeline0
sync=FALSE

GstTee
tee0
[=]

parent=(GstPipeline) pipeline0
num-src-pads=2

GstCapsFilter
capsfilter0

[=]
parent=(GstPipeline) pipeline0

caps=audio/x-raw, rate=(int)44100

GstFakeSrc
fakesrc0

[=]
parent=(GstPipeline) pipeline0

filltype=((GstFakeSrcFillType) Leave data as malloced)

Legend
Element-States: [~] void-pending, [0] null, [-] ready, [=] paused, [>] playing
Pad-Activation: [-] none, [>] push, [<] pull
Pad-Flags: [b]locked, [f]lushing, [b]locking; upper-case is set
Pad-Task: [T] has started task, [t] has paused task

sink
[>][bfb]

sink
[>][Bfb]

sink
[>][bfb]

src_0
[>][bfb]

ANY

src_1
[>][bfb]

ANY

sink
[>][bfb]

src
[>][bfb]

ANYsrc
[>][bfb][T]

ANY

[app_thread] [streaming_thread]

 3 - Just:

 - after forwarding the event to all tee src pads

 - and before storing the sticky event in tee0:sink pad

 a new tee src pad is added (tee:src_1) and linked to fakesink1:sink

 - The stream-start is NOT forwarded to tee:src_1 because the forwarding iteration has already finished

 - the stream start is NOT stored in tee:src_1 because tee0:sink has not stored the event yet

 4 - caps event arrives to the tee0:sink pad

 4.1 - it is forwarded to all tee src pads and to

fakesink0:sink and fakesink:1:sink pads

 So, fakesink1:sink receives the caps event

 without having the stream-start event

Analyzing real case (VI)

15

<GstPipeline>
pipeline0
[-] -> [>]

GstFakeSink
fakesink1

[=]
parent=(GstPipeline) pipeline0

sync=FALSE
async=FALSE

GstFakeSink
fakesink0
[-] -> [=]

parent=(GstPipeline) pipeline0
sync=FALSE

GstTee
tee0
[=]

parent=(GstPipeline) pipeline0
num-src-pads=2

GstCapsFilter
capsfilter0

[=]
parent=(GstPipeline) pipeline0

caps=audio/x-raw, rate=(int)44100

GstFakeSrc
fakesrc0

[=]
parent=(GstPipeline) pipeline0

filltype=((GstFakeSrcFillType) Leave data as malloced)

Legend
Element-States: [~] void-pending, [0] null, [-] ready, [=] paused, [>] playing
Pad-Activation: [-] none, [>] push, [<] pull
Pad-Flags: [b]locked, [f]lushing, [b]locking; upper-case is set
Pad-Task: [T] has started task, [t] has paused task

sink
[>][bfb]

sink
[>][Bfb]

sink
[>][bfb]

src_0
[>][bfb]

audio/x-raw
 rate: 44100

src_2
[>][bfb]

audio/x-raw
 rate: 44100

sink
[>][bfb]

src
[>][bfb]

audio/x-raw
 rate: 44100src

[>][bfb][T]
ANY

[app_thread] [streaming_thread]

 5 - Performs

 5.1 - fakesink1:sink is unlinked from tee:src_1

 5.2 - tee:src_1 is released

 5.3 - fakesink1:sink is linked to a new tee src pad (tee:src_2)

 5.3.1 - stream-start event is stored in tee:src_2

 5.3.2 - stream-start event is tried to be stored into fakesik1:sink

 Here we have the misordering error

General remarks

16

● Invest some minutes to think about race conditions when
you are developing. In this way you can save days (even
weeks) debugging when the bug appears

– For that you can use this idea: “putting sleeps in the
code should work like without them”

● Deadlocks are easier to debug that “open critical sections”

– GStreamer has a lot of “open critical section” to avoid
deadlock due to use mutex instead of recursive mutex

● Use g_warning/g_critical when you consider that the
situation is wrong

– It is better being quite strict with that and add too
g_warnings and remove they later than do not detect
wrong situations

Conclusions/Future work

17

● Debugging race conditions problem can consume a lot of time

– Automate fully or partially the process → Continuous
Integration

– How?

● Use free slots of the nightlies to run forever.sh of some
tests

● Use “bug hunters” to gather info if a bug happens
● Tests only cover part of the system

– What can we do?

● Stress your systems looking for bugs
● Use maintenance periods to use “race condition

provokers” to look for bugs

Thank you

Miguel París
mparisdiaz@gmail.com

http://www.kurento.org
http://www.github.com/kurento
info@kurento.org
Twitter: @kurentoms

http://www.nubomedia.eu

http://www.fi-ware.org

http://ec.europa.eu

	Slide 1
	What’s WebRTC
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

